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October 21, 2020
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Introduction and motivation

Introduction and motivation I

What are copulas?

Consider a random vector (X1,X2, . . . ,Xp). Suppose its margins are
continuous, i.e. the marginal CDFs Fi (x) = Pr (Xi ≤ x) are continuous
functions and F is their joint cumulative distribution.

By applying the probability integral transform to each component, the
random vector (U1,U2, . . . ,Up) = (F1(X1),F2(X2), . . . ,Fp(Xp)) has
uniformly distributed margins.

The copula of (X1,X2, . . . ,Xp) is defined as the joint cumulative dis-
tribution function of (U1,U2, . . . ,Up):

C (u1, u2, . . . , up) = Pr (U1 ≤ u1,U2 ≤ u2, . . . ,Up ≤ up)

= F
(
F−1

1 (u1), . . . ,F−1
p (up)

) (1)
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Introduction and motivation

Introduction and motivation II

The Sklar representation (Sklar, 1959) express the joint distribution of
(X1, . . . ,Xp) evaluated in (x1, . . . , xp) in terms of C and the margins
F1(x1) = P(X1 ≤ x1), . . . ,F1(xp) = P(X1 ≤ xp), as

F (x1, · · · , xp) = C {F1(x1), · · · ,Fp(xp)} . (2)

Copulas have been used for modelling several problems which required
dependence such as:

the occurence of joint extreme events (Genest and Favre, 2007)

spatial interpolation (Bárdossy and Li, 2008; Quessy et al., 2015)

regression modelling (Noh et al., 2013, 2015; Nasri and Rémillard,
2019; Nasri et al., 2019).
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Introduction and motivation

Introduction and motivation III

In the bivariate case, set Y = X2 and G = F2. Then the conditional
distribution of Y giving X1 = x1 is

Pr(Y ≤ y |X1 = x1) = ∂uC (u, v)|u=F1(x1), v=G(y) . (3)

Equation (3) makes it possible the use copula-based regression
methods.

More precisely, E(Y |X1 = x1) is the expectation of (3) and the
conditional quantile Q(α, x1) is the inverse of this equation.

For example, E(Y |X1 = x1) =

∫
yc{F1(x1),G (y)}g(y)dy , if the

density g of G exists, where c(u, v) = ∂u∂vC (u, v) is the copula’s
density.
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Introduction and motivation

Introduction and motivation IV

More generally,

E(Y |X1 = x1) =

∫ ∞
0

[1− ∂uC{F1(x1),G (y)}] dy

−
∫ 0

−∞
∂uC{F1(x1),G (y)}dy .

Similarly, Q(α, x1) = G−1 [C{F (x1), α}], where C(u, α) is the quantile
of order α of the cumulative function ∂uC (u, v) for a fixed u, i.e.,
∂uC (u, v)|u, v=C(u,α) = α.
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Introduction and motivation

Copula families I

In the literature, there are several families of copulas which display various
dependence structures:

The Archimedean copulas (Clayton, Gumbel, Frank, etc.) (Genest and
MacKay, 1986). In this case, the copula can be written as

C (u1, . . . , up, v) = φ
{
φ−1(u1) + · · ·+ φ−1(v)

}
,

where φ : [0,∞] 7→ [0, 1] satisfy φ(0) = 1, (−1)k dkφ(s)
dsk

≥ 0 for

k ∈ {0, . . . , p − 1}, and (−1)p−1 dp−1φ(s)
dsp−1 is non-increasing and convex

(McNeil and Nešlehová, 2009).

φ(s) = (1+s)−1/θ, θ > 0 defines Clayton’s copula while φ(s) = e−s
1/θ

,
θ > 1 defines Gumbel’s copula.

Bouchra R. Nasri (U. de Montréal) On non-central squared copulas October 21, 2020 6 / 31



Introduction and motivation

Copula families II

The elliptical copulas (Gaussian, Student, etc.) (Joe, 1997) are de-
fined from multivariate elliptic distributions Z1, . . . ,Zp+1 such as the
Gaussian or the Student. The copula can be written as

C (u1, . . . , up, v) = Fp+1

{
F−1

1 (u1), . . . ,F−1
1 (v)

}
,

where Fp+1 is the joint distribution function of Z1, . . . ,Zp+1 and F1 is
the common distribution function of Zj .

Archimedean and elliptical copulas generally give rise to monotonic
dependence structures between Y and X1, . . . ,Xp.

In particular, in the bivariate case, the conditional expectation and
the conditional quantiles are monotonic functions in x1 (Nelsen, 2006;
Dette et al., 2014).
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Introduction and motivation

Copula families III
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Figure 1: Estimation of the conditional expectation and the 90% conditional quantile
using simulated data from Clayton’s copula (τ = 0.6) with normal margins for X and Y .
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Dette et al. (2014)’s example

Dette et al. (2014) ’s example I

Problem: model the dependence between X and Y , where Y = (X −
0.5)2+εt , with X ∼ U(0, 1) independent of ε ∼ N (0, σ2), and σ = 0.1,
using a copula-based mean regression model.

Dette et al. (2014) looked for a copula family which could capture this
kind of dependence. However, they limited their search to the basic
families (elliptical and Archimedean), and their rotations.
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Dette et al. (2014)’s example

Dette et al. (2014) ’s example II

However, it is shown in Nasri et al. (2019) that there are also many
copula families for which E(Y |X = x) is not monotonic in x .

Here is an example: consider the chi-square copula introduced by
Bárdossy (2006); see also Quessy et al. (2016).

A chi-square copula with parameters a1, a2 ∈ [0,∞), and ρ ∈ [−1, 1]
is the copula associated with the random variables (Z1 + a1)2 and
(Z2 + a2)2, where Z1 and Z2 are joint standard Gaussian variables with
correlation ρ.

In Bárdossy (2006) and Quessy et al. (2016), the authors focused
mainly on the case of a1 = a2 because they were interested in spa-
tial interpolation.
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Dette et al. (2014)’s example

Dette et al. (2014) ’s example III
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Figure 2: Quadratic regression curve (red) and conditional expectation estimator
(green) for the simulated dataset. Here we used the chi-square copula with the
parameters (rounded), we found a1 = 2.6, a2 = 0, and ρ = 0.99 Nasri et al. (2019).
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New copula families

Non-central squared copulas I

For a given copulas C , let (U1, . . . ,Up) ∼ C , and apply the normal
transformation Z1 = Φ−1(U1), . . . ,Zp = Φ−1(Up).

The non-central squared copula C̃a, a = (a1, . . . , ap) ∈ [0,∞)p, is the
copula associated with the random vector (Z1 + a1)2, . . . , (Zp + ap)2.

C̃a is also the the copula associated with the random vector
|Z1 + a1|, . . . , |Zp + ap|.

For every u ∈ (−1, 1), one can define h̃a(u) = Φ{ha(u)}, with ha(u) =
sign(u)G−1

a (|u|) − a, and Ga(x) = P {|Z + a| ≤ x} = Φ (x − a) −
Φ (−x − a), x ≥ 0.
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New copula families

Non-central squared copulas II

The non-central squared copula C̃a is then given by

C̃a(u1, . . . , up) = P
[
∩pj=1{h̃aj (−uj) < Uj ≤ h̃aj (uj)}

]
=

∑
(ε1,...,εp)∈{−1,1}p

 p∏
j=1

εj

C
{
h̃a1(ε1u1), . . . , h̃ap(εpup)

}
.

When p = 2,

C̃a(u1, u2) = C
{
h̃a1(u1), h̃a2(u2)

}
− C

{
h̃a1(−u1), h̃a2(u2)

}
−C

{
h̃a1(u1), h̃a2(−u2)

}
+ C

{
h̃a1(−u1), h̃a2(−u2)

}
.
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New copula families

Non-central squared copulas III

Usually Archimedean copulas are not used for multivariate data since
it imposes that all pairs have the same distribution. This is not the
case here for C̃a even if C is Archimedean, unless a1 = · · · = ap.

If C is the Gaussian copula, then C̃ is the chi-square copula (Quessy
et al., 2016).

If C is the Student copula, then C̃0 is called the Fisher copula (Favre
et al., 2018).

If C is general and a1 = · · · = ap = 0, then one gets the squared
copula introduced in Quessy and Durocher (2019).
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New copula families

Non-central squared copulas IV
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Figure 3: Estimation of the conditional expectation and the 90% conditional quantile
using simulated data from NCS-t’s copula (τ = 0.36) with normal margins for X and Y .
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New copula families: some properties

Non-central squared copulas: limiting behaviors of C̃a I

Recall that the non-central squared copula C̃a, a = (a1, . . . , ap) ∈
[0,∞)p, is the copula of the random vector (Z1 + a1)2, . . . , (Zp + ap)2.

By assuming a1, . . . , ap > 0, C̃a is the copula associated with the

random variables Z1 +
Z2

1
2a1

, . . . , Zp +
Z2
p

2ap
.

One can see that by letting a1 →∞, . . . , ap →∞, C̃a → C .

By assuming a1, . . . , ap−1 = 0, and letting ap → ∞, C̃a is the copula
associated with the random variables Z 2

1 , . . . , Z 2
p−1 and Zp.
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New copula families: some properties

Non-central squared copulas: limiting behaviors of C̃a II

Figure 4: Scatterplots of random samples of size n = 1000 from C̃a1,a2
with standard Gaussian margins (τ = 0.75,

ν = 12). The graph of the pseudo log-likelihood for random samples of size n = 1000 from C̃a,a as a function of
a ∈ (0, 6] are displayed in column (c), where the true values of the non-centrality parameters are a1 = a2 = 4.
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New copula families: some properties

Non-central squared copulas: limiting behaviors of C̃a III

Set a = (a1, . . . , ap) ∈ [0,∞)p and suppose that aj ≥ b for all j ∈
{1, . . . , k}, with 1 ≤ k ≤ p. Then

sup
u∈[0,1]p

∣∣∣C̃a(u)− C̃∞,...,∞,ak+1,...,ap(u)
∣∣∣ ≤ kΦ(−b).

In particular, if aj ≥ b, for all j ∈ {1, . . . , p}, then

sup
u∈[0,1]p

∣∣∣C̃a1,...,ap(u)− C (u)
∣∣∣ ≤ pΦ(−b).
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New copula families: some properties

Non-central squared copulas: limiting behaviors of C̃a IV

For example, in the bivariate case, when b = 3, Φ(−3) = 0.0013, so

sup
u∈[0,1]2

∣∣∣C̃a(u)− C̃∞,a2 (u)
∣∣∣ ≤ .0013, if a ∈ [3,∞)× [0, 3],

sup
u∈[0,1]2

∣∣∣C̃a(u)− C̃a1,∞(u)
∣∣∣ ≤ .0013, if a ∈ [0, 3]× [3,∞),

and
sup

u∈[0,1]2

∣∣∣C̃a(u)− C (u)
∣∣∣ ≤ .0026, if a ∈ [3,∞)2.

Therefore, in the bivariate case, the estimation of the parameters should
be restricted to [0, 3]2.
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New copula families: some properties

Non-central squared copulas: dependence measures I

In the bivariate case, one can investigate the behavior of two measures
of dependence, namely Kendall’s tau and Spearman’s rho in terms of
the non-centrality parameters a1, a2.

For a given bivariate copula D, recall that

τ(D) = −1 + 4

∫
(0,1)2

D(u1, u2)dD(u1, u2), (4)

and

ρS(D) = 12

∫
(0,1)2

{D(u1, u2)− u1u2}du1du2, (5)

where (U1,U2) ∼ D.
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New copula families: some properties

Non-central squared copulas: dependence measures II

Quessy et al. (2016) gives an explicit formula for τ(C̃a1,a2) where C
is the Gaussian copula, but it is impossible to get an expression for
τ(C̃a1,a2) in the general case.

One can use numerical integration to compute values for both τ(C̃a1,a2)
and ρS(C̃a1,a2).

Bouchra R. Nasri (U. de Montréal) On non-central squared copulas October 21, 2020 21 / 31



New copula families: some properties

Non-central squared copulas: dependence measures III

Figure 5: Graph of Kendall’s tau and Spearman’s rho for C̃a when the copula
C is the Student copula and Clayton copula with Kendall’s tau 0.5, as a
function of a1 ∈ [0, 3], for a2 = 0 (black line), a2 = 0.5 (blue line), a2 = 2.5
(red line), and a2 = a1 (green line).
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New copula families: some properties

Non-central squared copulas: dependence measures IV

One can notice that the values of Kendall’s tau and Spearman’s rho
seem to be zero for the Frank copula which is true also for the
Student and the Gaussian copulas.

This is indeed true for all copulas which are invariant with respect to
the 180 rotation.

If C180 = C , then τ
(
C̃∞,0

)
= ρS

(
C̃∞,0

)
= 0.
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New copula families: some properties

Non-central squared copulas: parameters’ estimation (Genest et al., 1995) I

Table 1: Relative RMSE and bias (in parenthesis) in percentage for the estimation
of the parameters (a1, a2, τ) for C̃a1,a2 when the copula C is Gaussian and Clayton
family with τ = 0.5

(a1, a2) n = 250 n = 500
a1 a2 τ a1 a2 τ

Gaussian
(0.5, 1.5) 48.0(−4.3) 35.5(−0.1) 12.8(4.2) 23.6(−4.9) 26.2(0.0) 8.8(2.3)
(0.5, 2.5) 35.7(−2.1) 24.8(−9.7) 9.7(3.1) 13.0(−1.5) 17.9(−2.3) 5.7(1.7)
(1.0, 2.0) 40.4(1.0) 35.2(−21.9) 11.9(4.2) 24.8(−0.3) 30.0(−16.4) 7.5(2.1)
(1.5, 2.0) 45.2(21.4) 22.7(−7.2) 7.2(1.7) 36.7(16.7) 19.0(−6.3) 4.8(0.6)
(1.5, 2.5) 42.6(18.6) 31.8(−26.8) 7.0(1.6) 37.2(16.7) 29.6(−26.4) 5.0(0.7)
(2.0, 2.5) 37.4(23.0) 23.0(−11.7) 6.8(2.0) 36.6(26.1) 19.8(−9.4) 4.4(0.7)

Clayton
(0.5, 1.5) 19.5(−0.4) 12.6(1.0) 8.9(0.5) 13.2(0.0) 7.2(0.2) 6.1(0.3)
(0.5, 2.5) 22.2(−2.1) 13.9(−1.2) 7.0(1.2) 10.7(−1.1) 8.1(0.2) 4.8(0.4)
(1.0, 2.0) 12.8(−2.7) 16.7(−4.9) 7.8(2.4) 7.2(−0.9) 9.6(−0.9) 5.3(0.7)
(1.5, 2.0) 18.7(1.6) 21.8(−17.0) 8.2(1.8) 13.6(1.0) 20.5(−15.9) 5.7(0.9)
(1.5, 2.5) 17.0(−1.8) 37.2(−32.6) 8.1(2.4) 12.5(−1.4) 38.4(−34.3) 5.5(1.5)
(2.0, 2.5) 18.7(6.5) 22.8(−19.2) 6.8(0.9) 14.8(5.0) 21.6(−18.8) 4.8(0.5)
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New copula families: some properties

Non-central squared copulas: parameters’ estimation (Genest et al., 1995) II

Table 2: Relative RMSE and bias (in parenthesis) in percentage for the estimation
of the parameters (a1, a2, τ) for C̃a1,a2 when the copula C is Frank, and Gumbel
family with τ = 0.5.

(a1, a2) n = 250 n = 500
a1 a2 τ a1 a2 τ

Frank
(0.5, 1.5) 47.4(−2.2) 47.0(9.4) 12.9(3.8) 19.9(−5.0) 45.2(10.7) 9.2(2.9)
(0.5, 2.5) 39.8(−2.5) 38.2(−24.4) 11.2(3.3) 15.8(−3.2) 34.0(−20.2) 7.6(2.4)
(1.0, 2.0) 69.3(23.3) 41.3(−13.7) 13.0(4.5) 65.1(24.0) 38.7(−13.6) 8.6(2.0)
(1.5, 2.0) 61.9(32.8) 35.7(2.2) 9.2(2.9) 58.8(32.8) 32.6(2.4) 6.1(1.5)
(1.5, 2.5) 61.4(32.6) 33.7(−19.5) 8.8(2.6) 61.6(37.2) 30.8(−16.4) 5.6(1.1)
(2.0, 2.5) 41.0(15.0) 29.8(−14.0) 8.2(2.6) 40.8(21.6) 26.7(−10.3) 5.1(1.3)

Gumbel
(0.5, 1.5) 35.0(−4.8) 38.1(1.6) 10.9(3.7) 20.2(−2.9) 34.6(4.0) 7.8(1.7)
(0.5, 2.5) 20.9(−3.2) 30.4(−15.9) 9.5(3.2) 14.9(−1.0) 24.1(−9.6) 6.3(2.2)
(1.0, 2.0) 65.6(17.1) 40.5(−21.7) 12.6(4.3) 53.1(14.0) 36.8(−19.9) 8.8(2.3)
(1.5, 2.0) 65.9(38.6) 30.2(−4.7) 8.5(2.0) 57.9(33.3) 28.0(−2.7) 5.5(0.8)
(1.5, 2.5) 65.4(37.3) 33.5(−22.9) 8.4(2.4) 57.9(33.6) 30.9(−21.8) 5.4(0.6)
(2.0, 2.5) 43.0(27.2) 27.3(−14.1) 7.7(2.1) 43.0(32.1) 23.7(−11.3) 4.8(0.9)
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Conclusion

Conclusion I

In this presentation, new families of multivariate copulas were intro-
duced, extending the chi-square copula and the Fisher copula.

By varying the non-centrality parameters, one can model non-monotonic
dependence.

The limiting behavior of these copulas was shown as well as the behavior
of some dependence measures.

The estimation of parameters was discussed.
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Conclusion

Conclusion II

This work is already published in Statistics and Probability Letters
(Nasri, 2020). All numerical computations can be done by using the
R package NCSCopula available on CRAN (4666 download) https:

//cran.r-project.org/web/packages/NCSCopula.

In the paper you can also find some extra calculations, more precisely
the tail indexes for these families of copulas and the solution of a
conjecture formulated by Quessy et al. (2016) for the chi-square copulas
when a1 = a2 > 0
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Bouchra R. Nasri (U. de Montréal) On non-central squared copulas October 21, 2020 29 / 31



Conclusion

References III

Nasri, B. R. and Rémillard, B. N. (2019). Copula-based dynamic models for
multivariate time series. Journal of Multivariate Analysis, 172:107–121.

Nasri, B. R., Rémillard, B. N., and Bouezmarni, T. (2019). Semi-parametric
copula-based models under non-stationarity. Journal of Multivariate Anal-
ysis, 173:347–365.

Nelsen, R. B. (2006). An Introduction to Copulas, volume 139 of Lecture
Notes in Statistics. Springer-Verlag, New York, second edition.

Noh, H., Ghouch, A. E., and Bouezmarni, T. (2013). Copula-based re-
gression estimation and inference. Journal of the American Statistical
Association, 108(502):676–688.

Noh, H., Ghouch, A. E., and Keilegom, I. V. (2015). Semiparametric con-
ditional quantile estimation through copula-based multivariate models.
Journal of Business & Economic Statistics, 33(2):167–178.
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